ノート

調製食品中のレシチン分定量法の検討

石 黒 昌 孝, 難 波 茂, 中 津 純

Considerations on the Analytical Methods of Lecithin in Food Preparations

Masataka ISHIGURO , Shigeru NAMBA and Atsushi NAKATSU Tokyo Customs Laboratory ,
5-5-30 , Konan , Minato-ku , Tokyo , 108 Japan

For the quantitative analysis of lecithin in food preparations ,various methods such as precipitation method with acetone , determination of phosphorus contents by colorimetry , thin-1ayer chromatography (TLC) , and gas chromatography were examined.

It was found that the acetone precipitation method gave high quantitative value by interference from steroids and other coexisting materials. Depending on the chemical factor (Lecithin = $F \times Phosphorus$ content , F=30 or 25.4) to be used , different results were obtained in colorimetry. By TLC method , together with lecithin content, phosphatidyl choline , phosphtidyl ethanolamine , phosphatidyl inositol etc. could be identified simultaneously. The determined value by gas chromatography was appropriate except for egg lecithin.

It was suggested that analytical methods must be selected according to the compositions of the food preparations and the purpose of analysis.

- Received June 11.1984 -

1 緒 言

健康食品の一つとしてレシチンが注目され,レシチン及びその製品の輸入が増えている。レシチンにりんご,シンナモン,ココア,ナッツ類を添加したもの,ビタミンを添加したもの,小麦はい芽油等を加えたものなど,様々なものがある。レシチンは,関税率表第29.24号に特掲されているが,これらの製品は第21.07号に分類され,税率を異にするのでレシチン含有量の分析が必要となり,分析を依頼される例も増えている。

レシチンは 1850 年に Gobley が命名したもので,動物の脳や肝臓,じん臓筋肉等細胞組織に存在し,植物では種子,実,穀物等に比較的多量に含まれている。

工業的にレシチンを造るには,大豆が主原料であるが,とうもろこし,落花生,菜種等からも製造される。製造方法としては,大豆油に蒸気を吹込み,りん脂質を水和した形で沈澱させ,遠心分離後,減圧乾燥して造るのが常法である。こうしてできた大豆レシチンの組成の一例を示すと Table 1 のとおりである。

関税中央分析所報 第25号 1985

また,大豆レシチンについての規格としては,日本食品添加物公定書に記載されており,F.C.C の規格と併せて,Table 2に示した。

Table 1 Composition of soy lecithin

Item	Soy lecithin
Aceton precipitation matter	60 ~ 65%
Moisture	$0.1 \sim 0.5\%$
Acid value	20 ~ 25
Iodine value	92 ~ 98
Saponification value	195 ~ 200
Ash	7.0%
Galactose	3.0%
Carbohydrate	5.0%
Tocopherol	0.1%
Sterin	2.0%

Table 2 Institute standard of soy lecithin

Subject	Japan food additive standard	F.C.C.
Aceton soluble matter	40% under	50% under
Acid value	40 under	36 under
Benzene insoluble matter	0.3% under	0.3% under
Arsenic	2ppm under	3 ppm under
Heavy metal	20ppm under	40ppm under
Moisture	2% under	1.5% under

レシチンの構成りん脂質について,その代表的なものの構造を示すと次のようになっている。また,レシチンのりん脂質の構造の一例を Table 3 に示した。

P C Phoshatidyl Choline

$$\begin{array}{c|c} RCOO-CH_2 & & & \\ & | & & \\ RCOO-CH & O & & \\ & | & | & & \\ & | & | & & \\ CH_2-O-P-O-CH_2-CH_2-NH_3 & & \\ & | & & \\ & | & & \\ O \\ \hline \end{array}$$

P E Phosphatidyl ethanol amine

P I Phosphatidyl insitol

Table 3 Composition of lecithin

	Composition	Soy lecithin	Egg lecithin	Rape lecithin
PC	Phosphatidyl choline	20%	50%	22%
PE	Phosphatidyl ehanolamine	15%	15%	15%
PI	Phosphatidyl inositol	20%	0.4%	10%
PA	Phosphatidic acid	5%	0.7%	
PS	Phosphatidyl serine	2%	0.2%	
SG	Sterol glucoside	3%	2.4%	8%
TG	Triglyceride	35%	32%	40%

なお改質レシチンとしては,アルコール分画により PC(ホスファチジルコリン)の含量を高めたものや,アセチル化,ヒドロキシル化,よう素化,スルホン化,部分加水分解したものなどが報告 1)されている。

レシチンの分析法については,アセトン法²、りん定量法³,TLC法⁴,TLC-FID法⁵⁾等,数多くの報告がある。税関分析指針でアセトン分画,

ノート 調製食品中のレシチン分定量法の検討

IRS, TLC による方法が記述されている。種々の調製品や誘導体の出現等を考慮し、レシチン調製品の分析に際して、これらの分析法の適用について基礎的検討を行い、知見が得られたので報告する。

2 実験方法

2.1 実験に用いた試料

大豆レシチン 黄褐色液体 味の素 大豆レシチン 淡黄色粉末 味の素 精製卵黄レシチン 黄色粉末 旭化成 卵黄レシチン 黄色液状 旭化成 卵黄油-E 黄色液状 旭化成 淡黄顆粒状 輸入品 Soy Lecithin granules Soy Lecithin 褐黄色液状 輸入品 Soy Lecithin 淡黄色粉末 輸入品

2.2 試料の調製

均一にした試料を 80 程度で減圧乾燥する。次に石油エーテルに溶解し、ろ過する。溶解できないものはソックスレー氏法で石油エーテル抽出を行い、溶剤を減圧下で留去して試料とする。

2・3 アセトン法

2.3.1 試薬,試液の調製及び器具

石油エーテル 一級

アセトン 一級

ガラスろ過器 1G4

りん脂質飽和アセトン液:アセトン 11 を共栓フラスコに採り,アセトン難溶レシチン 1gを加え,氷水中で冷却しながら振り混ぜ,飽和させる。上澄液を使用する。

2.3.2 定量法

調製試料 10g を内容 300ml のビーカーに精ひょうする。これにあらかじめ氷水中で冷却した 200ml のりん脂質飽和アセトン液を注加し、十分混合した後、30 分間放置する。アセトン不溶物が沈澱したところで、上澄液を重量既知のガラスろ過器で吸引 ろ過し、更に氷冷りん脂質飽和アセトン液 30ml で3 回不溶解物を洗浄して、不溶物の全量をガラスろ過器に移し入れる。次にガラスろ過器に氷冷りん脂

質飽和アセトン液を満たし,吸収した後,減圧下(20mmHg以下)で1時間乾燥し,ひょう量し,アセトン不溶物をりん脂質とする。

2.4 りん含量定量による方法

2 . 4 . 1 試薬および器具

標準りん酸試液: KH₂PO₄ 0.4389g を 1l の水に 溶解する (1ml は P 0.1mg を含む)。

モリプデン酸アンモニウム液:(NH4)6Mo7O24・ 4 H2O 25gを300mlの水に溶解し,これに 75mlの硫酸を200mlの水で希釈した溶液を 加える。

ヒドロキノン溶液: ヒドロキノン 0.5g を 100ml の水に溶解し,1滴の硫酸を滴加する。

亜硫酸ナトリウム溶液: Na₂SO₃ 20g を 100ml の 水に溶解する。

希塩酸:塩酸を倍容の水で希釈する。

硝酸マグネシウム 一級

るつぼ:磁製,石英又は白金製

分光光度計:波長 600nm で測定できるもの

2 . 4 . 2 定量法

調製試料 10g をつるぼにひょう取し,これに 0.5g の硝酸マグネシウムを加え,ろ紙を燈心として燃やし,約 800 に強熱する。次に灰を水 5ml で潤した後,温希塩酸 10ml を加えて溶解し,ろ過してメスフラスコに移し,洗液を加えて 100ml に定容する。これを 50ml メスフラスコに一定量($10\sim20$ ml)採り,5ml のモリブデン酸アンモニウム試液を加えて数分間放置し,次に 2ml のヒドロキノン溶液を順次加え,最後に水を加えて 50ml に定容し,良く混合する。これをセルに移し,15 分経過後,無添加をブランクとして 600nm における吸光度を測定する。別にりん標準液 1 、 3 、 5ml を 50ml 容のメスフラスコにとり,同様に試薬を加えて吸光度を測定し,検量線を作成する。

$$\nu \rightarrow + \% = \frac{A}{B \times C} \times 25.4 \times 10$$

ただし A=検量線より求めたりん含量 (mg) B=試料溶液採取量 (ml) C=試料採取量 (g)

関税中央分析所報 第25号 1985

2 . 5 TLC による方法

2.5.1 試薬と器具

薄層板: Silica Gel G 20×20 cm

展開液:第1次 CHCl3·CH3OH·7N-NH4OH

(13:6:0.8)

第2次 CHCl₃·CH₃OH·C₂H₅COOH·

 $H_2O(17:2.5:2.5:0.6)$

発色剤: I2

標準りん溶液: KH₂PO₄ 1.0982g を 250ml に溶かす (1mg P/ml)。用時 20 倍に希釈する (50 µ g P/ml)。

モリブデン酸試液:(NH₄)₆MO₇O₂₄・4H₂O 29g を 100ml HClO₄に溶かし 500ml の水で希釈 する(24 時間放置)。

n-ヘキサン: 一級

過塩素酸:70%,一級

硝酸: 一級 n-醋酸ブチル

2.5.2 実験方法

調製試料 0.5~1g を精ひょうし,50ml のメスフ ラスコに移し入れ,n-ヘキサンに溶解し,定容す る。この溶液 0.1~0.3ml を薄層板の右下部 2×2cm の所に着ける。次に展開液に入れ,第1次液で展 開させる。30分乾燥後薄層板を横にして,第2次 液で2次元展開を行う。乾燥後2蒸気でスポット を確認し,鉛筆で印をつけ,それぞれ削り取って試 験管に移し入れる。試験管に沸石(ガラス球)と HClO4 1ml と HNO3 2~3 滴を加え ,加熱分解して 冷却後, 水を加えて15mlとし, よく混合する。こ の液 10ml をプラスチック試験管に採り,モリブデ ン酸試液 1ml を加え,良く混合する。n-醋酸ブチ ル 5ml を加えてよく振り,遠心分離し,上澄液を石 英セルに移し310nmで吸光度を測定する。別に標 準液を用いて作成した検量線より,りん含有量を求 めることができる。

2 . 6 GC による方法

2.6.1 器具と条件

ガスクロマトグラフ:島津7B型 カラム:Dexsil 300GC 50cm

カラム温度:200 350

昇温温度:5 /min 注入口温度:380

ガス量: N₂ 60ml/min , H₂ 0.5kg/cm²

Air 0.6kg/cm²

2.6.2 実験方法

調製試料 1g を n-ヘキサン又はエチルエーテル 20ml に溶解し , その $2\mu l$ を GC に注入する。

3 実験結果と考察

3.1 アセトン法について

りん脂質がアセトンに溶け難い性質を応用した分析法で, AOCS 法や食品添加物公定書等に採用されている。

同一試料についての再現性について示したのが Table 4 である。大豆レシチン(油分 35%程度) や粉末状のものではほぼ良い再現性を示すが,糖分 やビタミン等が入っている場合は,アセトン不容物 として定量されることも十分考えられる。また,温 度条件によって,沈澱し難い場合もあるので,低温 で行うことが必要である。方法は簡易であり,税関 分析としては,実用性があるものと考えられる。

Table 4 Recoveries of the same samples by acetone precipitation method

Sample	Acetone soluble matter (dry base)	Acetone in- soluble matter (dry base)
Soy lecithin A	33.7%	66.1%
Soy lecithin B	34.0%	65.8%
Soy lecithin C	34.2%	65.6%
Average	33.97%	65.83%
Soy lecithin granule A	2.6%	96.1%
Soy lecithin granule B	2.2%	96.2%
Soy lecithin granule C	2.3%	96.7%
Average	2.37%	96.33%

3.2 りん分析法について

りん含有量より,りん脂質を算出する方法であるが,基準油脂分析法記載の比色法を採用して実験を行った。

ノート 調製食品中のレシチン分定量法の検討

同一試料についての分析結果は, Table 5 のとおりであり, 再現性は比較的良い。大豆レシチンと卵黄レシチンでは, りん脂質の構成が異なっていることから算出係数が異なってくるものと考えられる。現在 AOCS では 30.0 を採用し, 基準油脂分析法で

は 25.4 を採用している。アセトン法の数値とは必ずしも一致しない結果となっている。大豆レシチンの場合 30.0 を用い,卵黄レシチンの場合 25.4 を用いると,良い結果が得られるようである。

Table 5 Recoveries of the same samples calculated from phosphorus contents by colorimetry method with molybdate

Sample	Phosphorus content	Lecithin $(P \times 30)$	Lecithin (P × 25.4)	Acetone precipita- tion matter
Soy lecithin A	2.08%	62.4%	52.83%	65.83%
Soy lecithin B	2.12%	63.6%	53.85%	65.83%
Soy lecithin C	2.12%	63.6%	53.85%	65.83%
Average	2.11%	63.3%	53.59%	
Soy lecithin granule A	3.10%	93.0%	78.74%	96.33%
Soy lecithin granule B	3.10%	93.0%	78.74%	
Soy lecithin granule C	3.12%	93.6%	79.25%	
Average	3.11%	93.2%	78.99%	

3.3 TLC 法について

TLC 法により展開すると、Fig.1 のようなスポットが得られる。したがってりん脂質が PC (ホスファチジルコリン)、PE (ホスファチジルエタノールアミン)、P (ホスファチジルイノシトール)、PA (ホスファチジル酸)及びその他のりん脂質に分離できる。分離状態は比較的良く、りんの定量も可能である。定量結果を示したのが Table 6である。再現性については相対的な比率としてほぼ良い結果が得られるが、総量としてはや3不足で、もう少し検討が必要である。

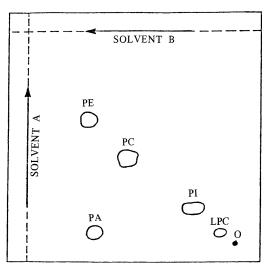


Fig.1 Diagram of TLC of phospholipids

Table 6 Analysis of lecithin content by TLC method

Sample		PC	PE	PI	Other	Total
Soy lecithin	P content	0.61%	0.44%	0.59%	0.17%	1.81%
Soy lecitiin	P × 30	18.3%	13.2%	17.7%	5.1%	54.3%
Soy lecithin	P content	0.82%	0.61%	0.73%	0.19%	2.35%
granule	P × 30	24.6%	18.3%	21.9%	5.7%	70.5%

関税中央分析所報 第25号 1985

3.4 GC法について

GC 法で分析した結果を示したのが Fig.2 である。

レシチンは C_{36} , C_{38} のジグリセライドとして, 2 つのピークが主として出現する。そして C_{52} , C_{54} などのトリグリセライドとの相対感度より, レシチン 含有量をおよそ判定できる。しかし, 卵黄レシチン などの場合, ピークの出現が不定であり, 大豆レシチンの場合でも Table 7 にみられるように再現性にや 5 欠ける点がみられる。

Table 7 Recoveries of lecithin by GC method

Sample	Triglyceride	Lecithin	Acetone insoluble matter
Soy lecithin A	32.1%	67.7%	65.83%
Soy lecithin B	33.2%	66.6%	65.83%
Soy lecithin C	30.6%	69.2%	65.83%
Average	31.97%	67.83%	
Egg lecithin A	36.4%	63.3%	69.2%
Egg lecithin B	40.6%	59.1%	69.2%
Egg lecithin C	34.4%	65.3%	69.2%
Average	37.13%	62.57%	

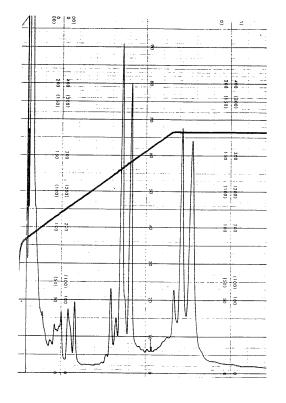


Fig.2 Gas chromatogram of soy lecithin

3 . 5 アセトン法 , りん定量法及び GC 法の比 ^較

同一試料についてのアセトン法,りん定量法及びGC法による結果を示したのがTable 8である。この表で明らかなように,3つの方法によるデータは必ずしも一致しない。アセトン不容物はガラクトー

ス等の炭水化物やステロイド等が含まれているためか,数値的にはやゝ高くでている。GC 法はジグセライドに完全に分解しているとすれば,正確な値を示すと考えられるが,もともと油脂中には若干のジグリセライドも存在するもので,やゝ低い定量値を示すものと考えられる。

Table 8 Analysis of lecithin content by acetone, phosphorus and GC method

	Acetone precipita- tion matter	P content	P × 30	P × 25.4	Lecithin by GC
Soy lecithin	65.83%	2.11%	63.3%	53.59%	67.83%
Soy lecithin granule	95.9%	3.11%	93.2%	75.95%	91.7%
Purified egg lecithin	96.0%	3.65%	109.5%	92.71%	89.6%
Egg lecithin	69.2%	2.57%	77.1%	65.28%	62.57%

ノート 調製食品中のレシチン分定量法の検討

3.6 TLC法とりん定量法との比較

同一試料についての,TLC 法とりん定量法との結果を示したのが Table 9 である。TLC 法は,PC,PI,PA,PE などを分離できるので改質レシチン(例えば PC 含量を高めた)であるかどうか,レシチンの誘導体であるかどうかなどを判定する上でも良い方法であるが,りんの総量はりん定量法より低く,完全には回収され難く,更に検討が必要である。

3.7 輸入品についての分析結果

輸入品についての分析結果を示したのが, Table 10 である。この分析値は特に問題のない限りアセトン法により分析し,アセトン不溶分をレシチン分としており,必要に応じりん定量法,TLCによる方法などを行った。もちろんココアの入っているものはテオブロミン定量によるココア分の定量を行ったり,異物の混入している場合はなるべく,異物を分離することが必要である。

Table 9 Analysis of lecithin content by TLC and phosphorus colorimetry

	By TLC		By colorimetry		
Sample	Total P	P × 30	P	P × 30	P × 25.4%
Soy lecithin	1.81%	54.3%	2.11%	63.3%	
Soy lecithin granule	2.35%	70.5%	3.11%	93.2%	
Egg lecithin	2.16%	64.8%	2.57%		65.28%
Purified egg lecithin	3.04%	91.2%	3.65%		92.71%

Table 10 Analysis of imported goods

Samples	Lecithin content	Fatty oil content	Remarks
Soy lecithin granules apple cinnamon flavored	71.9%	2.6%	Fruit 25%
Soy lecithin granules carob & nut flavoured	72.8%	4.4%	Nut 20%
Lecithin in capsule	67.4%	30.6%	
Lecithin granules	93.2%	5.4%	Ca ₃ (PO ₄) ₂ 1.4%
Lecithin granules	7.0.8%	8.6%	Coconut 20%
Soyabean lecithin	94.1%	2.3%	
Soyabean lecithin	57.3%	40.7%	
$L \cdot E \cdot C$	27.8%	14.8%	V.E 32.7% V.C 20.5%
Lecithin granules	72.4%	2.2%	Apple 20%
Lifeline lecithin in capsule	70.6%	27.8%	
Lecithin in capsule	67.4%	30.6%	

4 総 括

レシチン及び調製品中のレシチン含有量について,アセトン法,りん定量法,TLC 法,GC 法の4 つの方法を用いて検討を行った。TLC 法は構成りん脂質を PC,PE などに分離でき,組成を決定する上での重要な知見が得られた。アセトン法,りん定量法,GC 法は条件の設定が良ければ,いずれも良い定量結果を得ることができる。アセトン法では,ステロイド等が入っている場合,過大な結果を与える頗向があり,りん定量法は換算数字によりかなり異なった値となる。GC 法は C36,C38のピークより,大豆レシチンの場合,かなり良いデータを得ることができる。

レシチンは乳化剤とか、健康食品としていろいる な用途で注目され、改質が進められている。また、い ろいろな混合調製品も製造されてきているので分析 方法については、一つの方法にとらわれず、総合的 に検討することが必要であろう。結論としては、対象により方法を選択して定性を行い、十分に正しい 結論が得られるように迅速性をも考慮して実施することが大切である。

終わりに当たり、試料を提供していただき,かつ 御教示いただいた佐藤成一氏(味の素 KK)及び千 木良純氏(旭化成 KK)に深く謝意を表します。

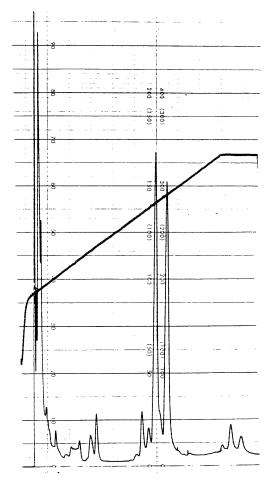


Fig.3 Gas chromatogram of soy lecithin granules

文 献

- 1) 佐藤成一,西岡鑑:油化学,28,No.10,119(1979)
- 2) 刈米達夫監修"食品添加物公定書解説書" 広川書店 B-583 (1973)
- 3) 日本油化学協会編"基準油脂分析試験法" 2.2.8.1-71
- 4) W.L.Erdahl , A.Stolyhwo , and O.S.Privett : J.Amer.Oil Chem.Soc. , 50 , 513 (1973)
- 5)金子弘:油化学,32,No.10,43(1983)