報文

テオプロミンとカフェインの分離定量

水 城 勝 美,出 来 三 男*

シリカゲル薄層クロマトグラフィーによるテオブロミンとカフェインの分離定量法について検討した。定量条件は次のとおりである。展開溶剤: アセトン - クロロホルム - エタノール,6:4:1(v/v),内部標準試薬:フェナセチン($16 \mu g$),二波長クロマトスキャンナー(試料側 270nm,対照側 320nm)によるデンシトグラム作成。この条件により,テオプロミン $1.6 \sim 8 \mu g$ の範囲で,テオプロミンとフェナセチンの重量比とデンシトグラムによるスポットの面積比の間には,直線関係がある。実際試料として,数種のココア製品中のテオプロミン含量をこの方法により定量し,良好な結果が得られた。

1 緒 言

ココアを含有する食品のうち関税率表,分類上問題となる点は,粉乳,ココアマスの混合物及び粉乳,ココアマス,砂糖からなる混合物中のココア含有量であると考えられる。

ココア分の算出にあたっては,ココア分の特殊成分であるテオブロミンを定量し,この値からココア分を算出している。テオブロミンの定量法については多数報告されているが,一般には,ココア中のテオブロミンを抽出後,吸光度法り~6。より定量する方法が行われている。これらの方法はいずれも操作が煩雑であり,また,分析時間も長時間を要するなどの欠点がある。

Schutz ら 4).5) の方法は, テオブロミン, カフェイン 及び総アルカロイドの定量方法としては操作が簡便ですぐれた方法の一つであるが, 酢酸鉛及び多量のクロロホルムを使用し, 分析時間も長時間を要する等の問題がある。

Senanayake ら 7) は , 薄層クロマトグラフィーによりテオプロミンを分離し ,比較的迅速に定量できることを報告している。ここでは , 分析法の簡便化のため , 薄層クロマトグラフィーによるテオプロミンの定量法について検討し , さらに , 実際試料からのテオプロミンの抽出法についても検討を加えた。

2 実験方法

2・1 試薬

テオプロミン: 和光純薬 カフェイン: メルク社製品 フェナセチン: キシダ化学

2・2 実際試料

各種ココア製品:大東ココア製

2・3 装置及び条件

デンシトメーター: 島津 CS - 910, 波長; 試料側, 270nm, 対照側, 320nm, シグザグスキャン(リニアライザー) 照射光束; 1.25×1.25mm, スキャンスピード; 20mm/min.

薄層クロマト板: Kieselgel 60F₂₅₄メルク社製品, 200mm×200mm,厚さ,250µm.

展開溶剤: アセトン - クロロホルム - エタノール (6:4:1v/v)

2・4 試料の調製と内部標準

テオプロミンは有機溶剤に難溶であるので,各種溶剤に対する溶解性について検討した結果,酢酸-n-ブタノール(1:1v/v)の混合溶剤を用いて加熱(100)溶解した場合,テオプロミンの溶解度は約0.2%であった。したがって,ココア中のテオプロミン含量

^{*}大蔵省関税中央分析所 271 千葉県松戸市岩瀬531

は,平均約2%であるので実際試料の採取量は2g/100mlとした。試料は室温に放置すると結晶が析出するので、使用時に加温する必要がある。内部標準として,各種試薬について検討した結果,テオブロミン及びカフェインのスポットと完全に分離したスポットを与えるフェナセチンを,内部標準とした。

3 結果及び考察

3・1 薄層クロマトグラフィーによるテオプロミン,カフェイン及びフェナセチンの分離条件

テオブロミン , カフェイン及び内部標準のフェナセチンを混合し , 酢酸 - n - ブタノール (1:1v/v) に溶解した検体を薄層板にスポット後 , 各種溶剤を用いて展開し , 分離性を検討した。Fig.1 に示したように , アセトン - クロロホルム - エタノール (6:4:1v/v) の展開溶剤では , 各スポット相互の分離もよく , 比較的円形のスポットを示しており , そのデンシトグラムもほぼ対称形であった。

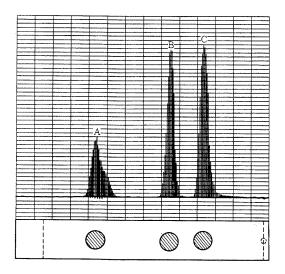


Fig. 1 TLC chromatogram and UV absorption profile

Solvent system: Acetone-chloroform - ethanol (6:4:1v/v).

A: Phenacetine, B: Caffeine, C:The obromine

3・2 測定波長の選択

薄層クロマトグラフィーで分離したスポットの検出に顕色試薬による方法があるが,呈色の安定性,均一性の面から,定量誤差の要因となるので,ここでは紫外吸収による検出法を行った。薄層板上の各スポットについて,直接吸収曲線を測定した結果を Fig.2 に示した。このようにテオブロミンでは 272.5nm,カフェインでは 271nm それぞれ極大吸収を示しており,フェナセチンの極大吸収は 245nm 付近にある。テオブロミンとカフェインの極大吸収は近接しているので,270nm を測定波長とした。この波長でのフェナセチンの吸光度は,極大値の約 60%まで減少する。デンシトグラムの測定は,320nm を対照とした二波長測定で行った。この対照側の波長 320nm では,テオブロミン,カフェイン及びフェセチンの吸光度は 0.0 である。

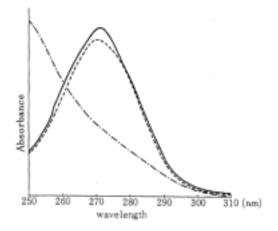


Fig. 2 UV absorption spectra on a thin-layer chromatogram of the obromine, caffeine and phenacetine

Theobromine,.....Caffeine, · Phenacetine

3・3 テオプロミンの検出限界

テオプロミン , 0.1 , 1.0 , 5.0 , $10.0\,\mu g$ をそれぞれ スポットして , アセトン - クロロホルム - エタノール (6:4:1v/v) の展開容剤で展開した後 , 270nm で測定したデンシトグラムを Fig.3 に示した。デンシトグラムに示したように , $0.1\,\mu g$ のテオプロミンでも明瞭なクロマトグラムを示しており , この範囲までは十分に定量が可能であると考えられる。定性的検出限界は $0.01\,\mu g$ である。

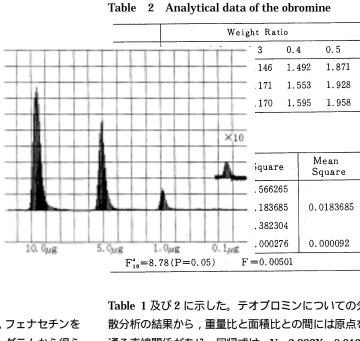


Fig. 3 Detection limit of the obt method

3・4 検量線の作成

各種濃度のテオブロミンについて, フェナセチンを 内部標準に用いての重量比とデンシトグラムから得ら れたスポットの面積比との関係について検討した。す なわち酢酸 - n - ブタノール(1:1v/v) に溶かしたテ オブロミンをそれぞれ 1.6~8 µg の範囲で分取し,こ れにフェナセチン 16 µg を加え,これを検体としてア セトン - クロロホルム - エタノール (6:4:1v/v) の 展開溶剤で分離し 270nm におけるデンシトグラムを 作図し,インテグレーターの数値を用いて,各クロマ トグラムの面積を求めた。3 回の繰り返し測定によっ て得られた平均値について回帰分析を行った結果を、

Table 1 Regression analysis of the obromine and caffeine

	Theobromine			Caffeine	
	W_T/W_P	A	$\Gamma^{/A}$ P	W_{C}/W_{P}	A_{C}/A_{P}
	0.1	0	. 396	0.1	0.314
	0.2	0	. 771	0.2	0.623
	0.3	1	. 162	0.3	0.964
	0.4	1	. 547	0.4	1.238
	0.5	1	. 919	0.5	1.567
\overline{X}	0.3	y 1	. 159	0.3	0.941
	$\widehat{Y} = \overline{y} +$	$\frac{\Sigma_{xy}}{\Sigma_{x^2}}$ ()	$(-\overline{x})$		
	Y=3.822X-0.0124			Y = 3.121X + 0.005	

Table 1 及び 2 に示した。テオブロミンについての分 散分析の結果から,重量比と面積比との間には原点を 通る直線関係があり,回帰式は,Y=3.822X-0.0124 であった。一方,カフェインについても同様な結果が 得られ,回帰式は,Y=3.121X+0.005であった。

これらの結果から明らかなように,フェナセチンを 内部標準として薄層クロマトグラフィーにより,高い 精度でテオブロミンを定量することができた。

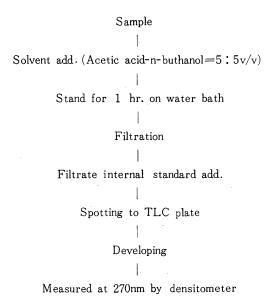


Fig. 4 Scheme of sample preparation

3・5 ココア製品中のテオブロミンの定量

ココア製品中のテオブロミンを定量する場合の操作方法の概要を Fig.4 に示した。すなわち, 試料 2g を採取して溶剤(酢酸・n・ブタノール,1:1v/v) 80ml を加えて湯浴上で1時間加温し,室温に戻してから,さきの溶剤で100ml に標定後ろ過した。ろ液10ml にフェナセチンの内部標準液2ml(16mg)を加えて,薄層板に約5 μg ずつスポットした。薄層板をあらかじめ展開溶剤(アセトン・クロロホルム・エタノール,6:4:1(v/v))で飽和させた容器にセットし,上昇法で約17cm 程度展開した。薄層板を風乾後,分離されたスポットを試料側270nm,対照側320nmの波長を用いて,ジグザグスキャン(リニアライザー)により,デンシトグラムを測定した。実際試料として,各種ココア製品についてテオブロミンを定量した結果は Table3 に

Table 3 Analytical results of commercial samples

	Theobromine (%)		Fat	
	TLC method	Sehütz method	(%)	
Cocoa beans	1.40	1.11	47.4	
Cocos powder	2.67	1.87	22. 3	
Cocoa mass	1.38	1.22	55. 7	
Cocoa mass	1.44	1.00	50.1	
Bitter chocolate	2.18	1.12	54.5	
Cocoa powder	2.30	1.72	9.7	
Cocoa powder	1.63	1.88	21.6	

示した。本法で得られた結果と Schutz の吸光度法により得られた結果を比較すると , 本法では , Schutz 法よりや高い値を示している。

4 要 約

薄層クロマトグラフィーによるテオブロミンの分離 は,展開溶剤にアセトン-クロロホルム-エタノール (6:4:1v/v) を用いると, 共存成分であるカフェ インとの分離もよく 270nm の波長を用いることによ り良好なデンシトグラムが得られた。この条件でフェ セチンを内部標準とすると,テオブロミンの含量とデ ンシトグラムによるスポットの面積との間には直線 関係があり、高い精度でテオブロミンを定量できるこ とを明らかにした。テオブロミンは酢酸 - n - ブタノー ル(1:1v/v) 混合溶剤により熱時に約0.2%溶解する ので,この溶剤を用いてココアパウダー,ココアマスな どの実際試料からの抽出を行った。一般にココア製品に は比較的多量のたんぱく質が含まれているが,この方 法の特徴は、従来の Schutz の方法などのように、抽出 操作に酢酸鉛や多量のクロロホルムを使用する必要が なく,酢酸-n-ブタノール混合溶剤を用いることに より、かなり除去することができるのでテオブロミン の定量に好都合である。また,比較的迅速に多数の試 料を定量することができる。この方法を数種のココア 製品中のテオブロミン含量の定量に応用し,良好な結 果を得ることができた。

文 献

- 1) D. T. Englis and J. W. Miles: Anal. Chem., 26, 1214 (1954).
- 2) A. J. Shingler and J. K. Carlton: Anal. Chem., 31, 1679 (1959).
- 3) 川端欣吾:本誌, No.5, 31 (1967) .
- 4) G. P. Schutz, A. J. Prinsen and A. Pater: Rev. Int. Choc., 25, 7 (1970).
- 5) 石黒昌孝:本誌, No. 13, 39 (1973).
- 6) Oyin Somorin: J. Food sci., 41, 458 (1976).
- 7) U. M. Senanayake and R. O. B. Wijesekera: J. Chromatogr., 32, 75 (1968).

The Quantitative Determination of Theobromine and Caffeine

Katsumi MIZUKI, Mitsuo DEKI*

^{*}Central Customs Laboratory, Ministry of Finance, 531, Iwase, Matsudo - shi, Chiba - ken, 271 Japan

Quantitative determination of theobromine and caffeine on thin-layer chromatograms, using densitometer for measurement of UV absorption, were investigated. A Shimadzu CS-910 dual-wavelength scanner equipped with linearizer was used with following setting conditions: scanning speed, 5mm/min with zig-zag scanning; reflection mode; slit for measurement, $1.25\times1.25.$ mm Phenacetine was used as the internal standard. For the measurement of the UV absorption intensities of the spots of the obromine, caffeine and phenacetine on the chromatogram, sample and reference beams were set at 270nm and 320nm, respectively. Thin-layer chromatography was carried out on $25\,\mu$ m layers of Kieselgel 60 F254 (E. Merk, Darmstadt, G.F.R.) . The solvent system used for development was acetone-chloroform-ethanol (6:4:1v/v) . After development, the plate was dried in a room condition. The relationship between the weight ratio of theobromine to phenacetine and area ratio of them was linear, The present method was applied to the quantification of theobromine and caffeine in commercial cocoa products.

Received Sept. 30, 1977