報文

高速液体クロマトグラフィーによるトリグリセリドの分離

川端省三.出来三男*

ヤシ油,ダイズ油,その他 10 種の植物油のトリグリセリドを,Permaphase - ODS カラムを用い,アセトン - アセトニトリル混液を移動相とする HPLC 法により分離した。ヤシ油は8本のピーク,ダイズ油は5本のピークに分離される。ダイズ油の分離はGLCによる分離よりピーク数が多い。ヤシ油及びダイズ油のHPLCにおける溶離液のGLCによる分離,並びに標準トリグリセリドの保持時間の比較から,この逆相系を用いるHPLCでは,トリグリセリドの保持時間はその炭素数だけでなく,その不飽和度によっても異っていることを明らかにした。さらに,キャパシテイーファクター(k)の対数とトリグリセリドの炭素数及び不飽和度には直線関係が認められた。

1 緒 言

油脂の分析は,主としてガスクロマトグラフィー(以下 GLC と略記)により脂肪酸組成,トリグリセリド組成,ステロイドなど化学組成のほか,屈折率,ヨウ素価,ケン化価などから油脂の種別の判定を行っている。しかし,油脂は天然物であり,同じ種類のものでも組成には変動があり,種類が異っていても分析値が似ているものもある。

GLC によるトリグリセリドの分離は 試料を直接装置に注入するだけでよく 油脂の種別を判定するために簡便で迅速な方法であるが , 200 から 350 の高い温度で行わなければならないため , 条件の僅かな違いでクロマトグラムが異ったり , 各ピークはアシル基の炭素数の総和として現れ ,構成する脂肪酸の不飽和度に関する知見が全く得られないなどの難点がある。そのため , 炭素数 18 の脂肪酸を主成分とするダイズ油 , 綿実油などの植物油は相互によく類似したガスクロマトグラムを示し種別の判定が困難となる。

これまで高速液体クロマトグラフィー(以下 HPLC

* 大蔵省関税中央分析所 271 千葉県松戸市岩瀬 531

と略記)による脂質の分離はステロイドなどの特定の化合物を対象としており 1¹トリグリセリド相互の分離は分子サイズによって分離する GPC カラムによる方法が試みられているが 2¹分離は不十分で油脂の鑑別には使用できない。

最近, Wada ら 3 は, カラムに μ - Bondapack - C16を用い, メタノール - クロロホルム混液を移動相とする HPLC によりダイズ油を分離し, そのトリグリセリド 組成を決定している。

ここではカラムに Permaphase - ODS を用い,アセトン - アセトニトリル混液を移動相とする HPLC 法により,各種の植物油脂のトリグリセリドを分離し,その判別に有用であることを明らかにした。さらに,キャパシティーファクター(k')とトリグリセリドのアシル基の炭素数,及びその不飽和度との間には直線関係があることを知ったので報告する。

2 実 験

2 · 1 試 料

使用した植物油は市販のものをそのまま用いた。 標準トリグリセリド(トリカプリン,トリラウリン, トリミリスチン,トリステアリン,トリパルミチン, トリパルミトレイン,トリオレイン,トリリノレイン) はシグマ社製のものを用いた。

2 · 2 HPLC

高速液体クロマトグラフは島津デュポン 830 型で , 示差屈折計を検知器とし , 分離カラムは内径 2.1mm 長さ 25cm で , Permaphase - ODS(Zipax のシリカ表面にオクタデシルシリルクロリドを反応させたもの)を充てんしたものを用いた。 4

カラム槽温度は室温,検知器温度は25 とした。移動相はアセトン(試薬特級)及びアセトニトリル(高速液体クロマトグラフイー用)を種々の割合で混合して用いた。

試料は ,約 $1 \mu l$ を液状のものはそのまま ,ペースト状のものは加温して溶融し ,マイクロシリンジを用いて装置に注入した。

2 · 3 G L C

ガスクロマトグラフは島津 GC - 5APF で, FID 検知器を用い, カラムは chromosorb GAW($60 \sim 80$ メッシュ)を固定相担体とし, Dexsil 300GC を充てん剤としたガラスカラム(内径 3mm, 長さ 30cm)で, カラム

温度は200~350 , 5 /min で昇温を行い, キャリヤーガスはHe(60ml/min), 注入口温度は350 とした。

3 結果及び考察

3・1 標準トリグリセリドの分離

Fig.1 は標準試薬の各トリグリセリドの混合物について HPLC で分離したもので 同じ条件でヤシ油を分離したものと比較した。トリカプリン ,トリラウリン ,トリミリスチン及びトリステアリンの飽和のトリグリセリドは対数的に溶出時間が増大している。しかし ,不飽和脂肪酸からなるトリオレン及びトリリノレンでは ,溶出時間が早く ,不飽和度が高くなるほど溶出時間が短いことが認められる。また ,ヤシ油のクロマトグラムで ,ピーク C30 ,C36 及び C42 の溶出時間は ,それぞれ標準試薬のトリカプリン ,トリラウリン及びトリミリスチンの溶出時間に対応している。

C36の飽和トリグリセリドの分子量は 644 であり, C38の飽和トリグリセリドの分子量 668 よりも 28 質量数が大きい。このような質量数差の化合物の分離は, 分子サイズによって分離する GPC カラムでは不可能であり,トリグリセリドは単一のピークとして検出される。しかし, Permaphase - ODS を固定相とした逆相

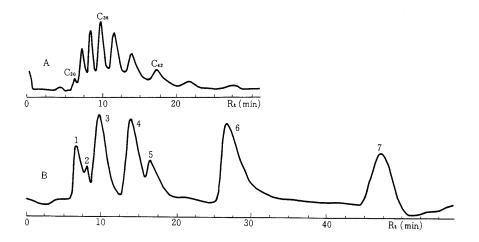


Fig.1 Chromatograms of triglycerides by HPLC

A: coconut oil and B: standard mixtures.

Peak1: Tricaprin, 2: Trilinolein, 3: Trilaurin, 4: Triolein,

5: Trimyristin, 6: Tripalmitin, 7: Tristearin.

Column : permaphase-ODS, Eluent : acetone-acetonitrile(45 : 55v/v) Flow rate : 0.138ml/min, Pressure : 30kg/cm², Detector : 16 × 10⁻⁵RIU

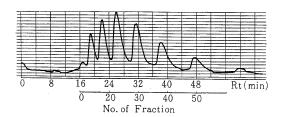


Fig.2 Chromatogram of coconut oil by HPLC Column:permaphase-ODS, Eluent: acetone-acetonitrile(45:55v/v), Flow rate: $0.094ml/min,\ Pressure:20kg/cm^2$ $Detector:16\times10^{-5}RIU.$

分配クロマトグラフィーでは,固定相及び移動相への 分配の差を利用して混合物の分離が行われるため,分 子量の差だけでなく不飽和度も分配に大きく関与し ているものと考えられる。

3・2 ヤシ油のトリグリセリドの分離

Fig.2 にヤシ油のトリグリセリドを HPLC により分離したクロマトグラムを示す。ヤシ油においては8つのピークに分れ、このクロマトグラムは GLC のクロマトグラムと類似しているがピーク数は GLC の場合よりも少ない。ヤシ油の HPLC における溶離液を 60 µl ずつ分取し、各フラクションを GLC によって分離したものが Fig.3 である。各フラクションの主要ピークは GLC の場合と同様に、ほぼ GLC でのトリグリセリド分布に対応して規則的に溶出している。

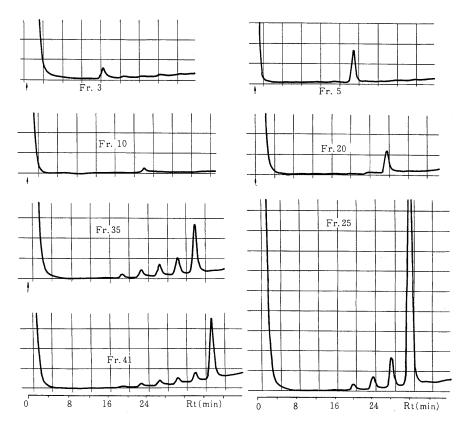


Fig. 3 Gas chromatograms of each fraction of coconut oil fractionated by HPLC Fraction numbers are the same as cited in Fig.2.
 Column:Dexsil 300GC, glass column 3mm × 30cm, Column temperature:200 - 350 , 5 /min, FID, He:60ml/min .

3・3 ダイズ油のトリグリセリドの分離

ダイズ油のトリグリセリドの HPLC におけるクロマトグラムを Fig.4 に示す。GLC による分離では,トリグリセリドのアシル基の炭素数が C_{54} のピークを最大として, C_{50} , C_{52} の3 本しか得られないが,HPLC では5本のピークに分れ,HPLC による分離は GLC とは異っている。ダイズ油の HPLC による各ピーク成分を分取し,これらの各フラクションについて GLC により分離すると,Fig.5 に示すように各フラクションとも C_{50} , C_{52} , C_{54} または C_{52} , C_{54} のピークが現われている。このことはトリグリセリドの不飽和度の相異によっても分離されていることを示唆するものである。

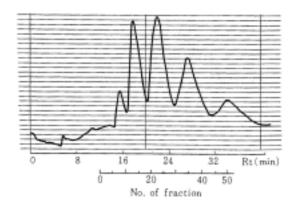


Fig. 4 Chromatogram of soyabean oil by HPLC Column: permaphase-ODS, Eluent: acetone - acetonitrile(60:40v/v),

Flow rate: 0.14ml/min, Pressure: 30kg/cm²,

Detector: 16×10^{-5} RIU.

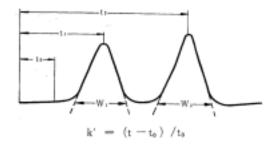


Fig.5 Gas chromatograms of each fraction of soyabean oil fractionated by HPLC Fraction numbers are the same as cited in Fig.4.

Column temperature: 350 , other conditions are the same as cited in Fig.3.

3・4 キャパシティーファクター(k')と トリグリセリドの炭素数

ヤシ油の HPLC における各ピークについて, $3\cdot1$ 及び $3\cdot2$ で同定したトリグリセリドのアシル基の炭素数と k'の関係を Fig.6 に示した。k'はクロマトグラムから次のようにして求めた 5)

ただし,toはカラムに保持されない化合物が溶出する位置で四塩化炭素を注入して求めた。

Fig.6 のように k'の値はトリグリセリドのアシル基の炭素数に対応して対数的に増大し,その勾配は移動相の組成及び流速の変化にかかわらずほぼ一定であり,アセトンの含有量の多い移動相では各トリグリセリドの溶出は早くなる。

また,Fig.7に示したように,k'は同族化合物では不 飽和の数に対応して同じ勾配の直線関係を示してい る。

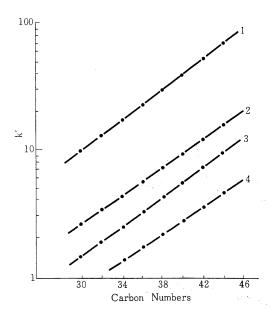


Fig. 6 Relation of capacity factor(k') and carbon numbers of acyl groups of triglyceride in coconut oil Column: permaphase-ODS, Detector: 16×10^{-5} RIU, Composition of eluents are as follows:

No.	acetone: a	cetonitrile	flow rate
1	45	55 (V/V)	0.176 me/min
2	50	50	0.176
3	55	45	0.140
4	60	40	0.140

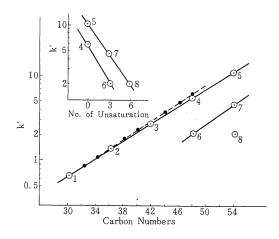


Fig.7 Relation of capacity factor(k') and carbon numbers of acyl groups of triglyceride

Coconut oil
Authentic sample

1 . Tricaprin
2 . Trilaurin
3 . Trimyristin
4 . Tripalmitin
5 . Tristearin
6 . Tripalmitolein
7 . Triolein
8 . Trilinolein

Conditions are the same as cited in Fig.1

Table1 に、k', 理論段数(N), 理論段高さ(H),及び分離係数(Rs)を示した。これらの値はヤシ油のクロマトグラムから求めた。 C_{34} と C_{32} のトリグリセリドの Rs は 1 で、 C_{32} 以下の場合,Rs < 1, C_{34} 以上では Rs > 1 となっている。Rs = 1 のとき 4 分離であり,分離ピークがガウス分布をしている場合,両成分の重なりは 2%にすぎないが,実際には重なりがもっと大きく,このことは Fig.3 からも認められる。

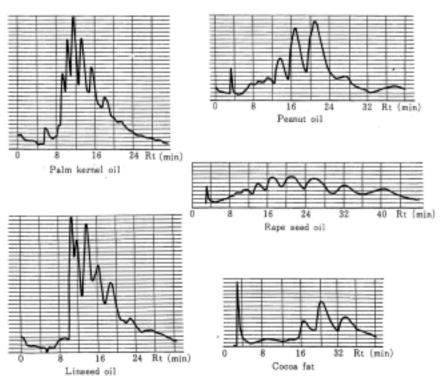
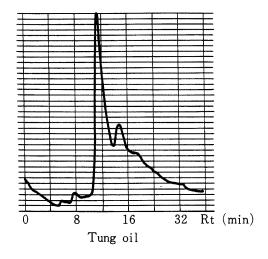
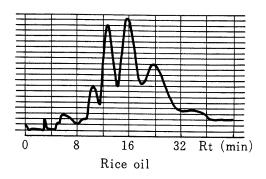
Carbon Number	30	32		34 1.00 576		36 1.33 784		8	40		3.04
$k' = (t-t_0)/t_0$	0.54	0.75	1					1.75 900		30	
N =16 (t/w)		466	5							06	
H = L/N (mm)		0.54		0.43 0.3		32	32 0.28		0.25		
$a = k_1^i/k_1^i$	1.38		1.33	1.	33	1.	31	1.	31		1.32
Do-2/s 1 //w. +ws)	0.26		1.00	1	10	1	42	- 2	00		

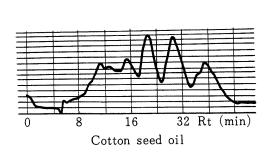
Table 1 Values of capacity factor(k'), theoretical plates(N), height of theoretical plates(H), separation factor(a) and resolution(Rs)

3・5 各種の油脂のHPLC

各種油脂について同一条件で測定した HPLC のクロマトグラムを Fig.8 及び Fig.9 に示した。

パーム核油はヤシ油と比較的よく似た脂肪酸組成を 有しており,クロマトグラムもヤシ油のものに類似し ている。 アマニ油,ピーナッツ油,カカオ脂は Fig.4 で示したダイズ油と同様に,主に炭素数 18 の脂肪酸から成るトリグリセリドから成っており,これらのガスクロマトグラムは互いによく似ているが,不飽和度が異るため,HPLC におけるクロマトグラムは互いに著しく異っている。アマニ油ではリノレン酸が多く,最初に出るピークはトリリノレンと考えられる。


Fig.8 Chromatograms of various vegetable oil by HPLC

Column : permaphase-ODS, Eluent : acetone-acetonitrile(60 : 40V/V), Flow rate : 0.248ml/min, Pressure : 50kg/cm², Detector : 16×10^{-5} RIU.

ナタネ油は炭素数 20 の脂肪酸を 5%程度含むため, トリグリセリドのガスクロマトグラムも他のものとや や異っているが, C_{54} のトリグリセリドが非常に多く, GLC の測定条件によってはピーナッツ油とよく似たパ ターンになるが,HPLC では非常な相異が認められる。 キリ油はトリリノレインを主成分とする乾性油であり,最初にトリリノレインの強いピークが検出される。また,米ヌカ油,綿実油,アーモンド油においても特徴的なクロマトグラムを与え,これらの油脂相互の鑑別はHPLC法によって容易に行うことができる。

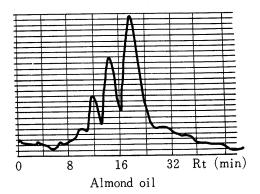


Fig.9 Chromatograms of various vegetable oil by HPLC Conditions are the same as cited in Fig.8.

文 献

- 1) K . Kiuchi , T . Ohta and H . Ebine : J . Chrom . Sci . , 13 , 461(1975) .
- 2) M . J . Cooper and M . W . Anders : J . Chrom . Sci . , 13 , 407(1975) .
- 3) S. Wada, C. Koizumi and J. Nonaka:油化学, 26, 96(1977).
- 4) J . J . Kirkland : Anal . Chem . , 43 , 12 , 36A(1971) .
- 5)波多野博行編:化学の領域増刊 102号 "高速液体クロマトグラフィー", (1973).

Analysis of Triglyceride of Vegetable Oils by High Pressure Liquid Chromatography

Shozo KAWABATA and Mitsuo DEKI*

*Central Customs Laboratory, Ministry of Finance, 531, Iwase, Matsudo - shi, Chiba - ken, 271, Japan.

The technique of high pressure liquid chromatography(HPLC) was applied to the separation of triglyceride of coconut oil, soyabean oil and other vegetable oils, using a column packed with permaphase-ODS and a solvent of acetone-acetonitrile mixture. The triglycerides were separated into eight peaks in coconut oil, five peaks in soyabean oil and some peaks in other vegetable oils.

It was found that not only the carbon number but also the degree of unsaturation of triglyceride gave different retention time, from the result of the GLC analysis of fraction eluted by HPLC and the comparison of the authentic mixture of triglycerides. Moreover, a linear relationship between the logarithms of capacity factor(k') and the carbon number of triglycerides, and a linear relationship between the k' and the degree of unsaturation were found.

As a result, it was suggested that species of many vegetable oils can be estimated by the HPLC method.

Received Sept. 30, 1977