ノート

コバルトを含む酸化鉄の鑑別

秋 山 宏, 水 城 勝 美, 鈴 木 正 男*

Identification of Iron Oxide containing Cobalt

*Central Customs Laboratory , Ministry of Finance 531 , Iwase , Matsudo-shi , Chiba-ken , 271 Japan

The discrimination of spinel ferrites such as -iron oxide , surface treated -iron oxide with cobalt and cobalt ferrate was investigated using x-ray diffractometry , x-ray fluorescence spectrometry and solubility behavior to acids.

The diffraction angle of -iron () oxide was different from that of cobalt ferrate and iron () iron () oxide. But, it was undistinguishable from that of surface treated -iron () oxide with cobalt by x-ray method.

In this case , it was found that the discrimination of surface treated -iron () oxide with cobalt from others could be practically possible by the application of solubility behavior to acid.

- Received June 13.1984 -

1 緒 言

酸化鉄は磁気記録用として、カセットテープ、ビデオテープ、磁気テープ、磁気ディスク等に使用され、これらの産業の目覚ましい発展と共に、その消費量は急増してきている。中でも VTR 用のものは激増している。一般にオーディオ用にはガンマ酸化鉄がそのまま用いられているが、VTR 用には、ガンマ酸化鉄の表面にコバルトを微量だけ付着させたものが用いられている。これは、コバルトで表面処理したガンマ酸化鉄の方が磁気特性が優れているためで、VTR 用では鮮明な画面と良い音質を得るためにこれが多く使用されている。四三酸化鉄は大きな保磁力をもつが、最近ではあまり用いられていない。このほかに、金属粉末を用いたメタルテープ、真空中で強磁性金属を蒸発させ付着させた蒸着テー

*大蔵省関税中央分析所 〒271 千葉県松戸市岩瀬531

プなどがあり,更に最近超微粒子化したガンマ酸化鉄 などが研究開発されてきている。

税表分類においてコバルトを含む酸化鉄は、化学的に単一な化合物であれば税番第 28.28 号-6 に分類され、コバルトで表面処理した酸化鉄であれば調製品として税番第 38.19 号 - 11 [2] に分類される。

したがって,表面処理したものがどうかの鑑別が必要となる。ここでは,ガンマ酸化鉄,コバルトで表面処理したガンマ酸化鉄,鉄酸コバルト等について鑑別が可能かどうかを検討したので報告する。

2 実 験

2・1 試料及び試薬

コバルト (山田化学薬品, 試薬) 酸化第二コバルト (純正化学, 試薬) 鉄酸コバルト (添川理化学, 試薬)

関税中央分析所報 第25号 1985

酸化第二鉄 (純正化学,試薬) 四三酸化鉄 (和光純薬工業,試薬)

ガンマ酸化鉄 (国産品2種) コバルトで表面処理したガンマ酸化鉄

(国産品2種)

輸入品3種

2 ・ 2 測定装置

X 線回折装置:理学電機,RAD-2A 蛍光 X 線分析装置:理学電機,SX 型 原子吸光分光光度計:島津製作所,AA-650

3 結果及び考察

ガンマ酸化鉄,四三酸化鉄,鉄酸コバルト等はスピネルフェライトと呼ばれ,Fig.1に示すようなスピネル構造を有する。しかし,これらのうちガンマ酸化鉄には空格子点が存在するので,X線回折において他のものと差異を生じる可能性が考えられる。また,コバルトで表面処理したガンマ酸化鉄は,蛍光 X線スペクトルにおいて,そのままの状態のものと粉砕したものとの間で鉄とコバルトの相

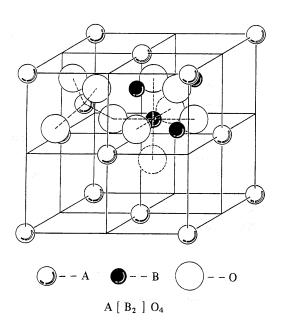


Fig.1 Spinel structure

対ピーク比が異なる可能性が考えられる。更に,コバルトで表面処理したガンマ酸化鉄では,鉄酸コバルトとは異なり,酸に溶かしていく場合に鉄とコバルトの溶け出す割合が異なるものと考えられる。

3 · 1 X線回折

四三酸化鉄,鉄酸コバルト,ガンマ酸化鉄及びコバルトで表面処理したガンマ酸化鉄は同じスピネル構造を有するので,X線回折パターン(Fig.2)は

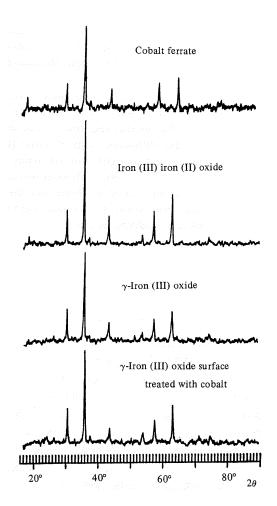


Fig.2 X-ray diffraction patterns

Target	Cu
Voltage	35kV
Current	20mA
Count Full Scale	10,000 cps
Time Constant	1 sec
Scan Speed	8°/min

ノート コバルトを含む酸化鉄の鑑別

ほぼ一致している。しかし,回折角 63°付近の < 4,4,0 > 面の回折線を拡大すると(Fig.3)鉄酸コバルト及び四三酸化鉄はガンマ酸化鉄及びコバルトで表面処理したガンマ酸化鉄に比べ回折角が約0.3°小さくなっている。これは,ガンマ酸化鉄ではスピネル構造に空格子点(Fig.1 の B の位置に存在し, <1,1,0 > 方向に連なっている)が存在することにより格子の面間隔がわずかに小さくなっていて,そのために回析角が大きくなっているものと考えられる。

Cobalt ferrate

Iron (III) iron (III) oxide

7-Iron (III) oxide surface treated with cobalt

62.0° 62.5° 63.0° 63.5°

20

Fig.3 X-ray diffraction patterns

Target Cu
Voltage 35kV
Current 20mA
Count Full Scale 4,000 cps
Time Constant 1 sec
Scan Speed 0.5 °/min

この回折角の違いからガンマ酸化鉄をベースとしたものかどうかの鑑別は容易であるが,コバルトで表面処理をしているかどうかは判断できない。

3 · 2 蛍光 X 線分析

コバルトで表面処理したガンマ酸化鉄そのままの ものと振動ミルで 1 時間粉砕したものについて,鉄の K とコバルトの K の相対ピーク高さ及び相対ピーク面積を比較したが,有意差は認められなかった。

3・3 酸に対する溶解性

コバルトで表面処理したガンマ酸化鉄では,酸に対して表面のコバルトが先に溶解することから,一定時間溶解した後可溶物と不溶物に分け,それぞれのコバルトと鉄の割合を比較することにより鑑別が可能である。

3・3・1 酸に対する溶解度の変化

コバルトで表面処理したガンマ酸化鉄を,塩酸,硫酸及び硝酸により 20 で 2 時間溶解させたときのコバルトと鉄の割合は,Table 1 に示すとおりである。

Table 1 Change of solubility* of surface treated -iron () oxide in acids

Portion Condition		I	nsolub	le	Soluble		
Acid	Con- centra- tion	Fe (%)	Co (%)	Co Fe	Fe (%)	Co (%)	Co Fe
H Cl	1:1	7.5	0.00	0.000	60.7	2.51	0.041
	1:4	61.3	1.08	0.018	6.89	1.43	0.208
H ₂ SO ₄	1:1	33.9	0.14	0.004	34.2	2.37	0.069
	1:4	62.6	1.31	0.021	5.56	1.21	0.218
HNO ₃	1:1	65.9	1.83	0.028	2.11	0.68	0.322
	1:4	67.0	2.05	0.031	1.17	0.46	0.393

* At 20°C, 2 hrs

塩酸及び硫酸では,濃度の違いによりコバルトと 鉄の割合が著しく変化しているが,硝酸では濃度に よる割合の変化が少ない。

関税中央分析所報 第25号 1985

3・3・2 時間による溶解度の変化

コバルトで表面処理したガンマ酸化鉄を,硝酸 1 対 1 により 20 で時間を変化させて溶解させたときのコバルトと鉄の割合は, Table 2 に示すとおりである。コバルトと鉄の割合は時間と共に小さくなる傾向があるが,沈澱物と可溶物について比較するとどの時間でもおよそーけたの違いとなっている。

Table 2 Change of solubility* of surface treated -iron () oxide with time

	Insoluble portion			Soluble portion			
Time (min)	Fe (%)	Co (%)	Co Fe	Fe (%)	Co (%)	Co Fe	
10	67.5	2.26	0.033	0.54	0.25	0.46	
30	67.4	2.17	0.032	0.72	0.33	0.46	
60	66.9	2.04	0.030	1.17	0.46	0.39	
120	65.9	1.83	0.028	2.11	0.68	0.32	
300	63.2	1.11	0.018	4.88	1.40	0.29	
600	57.8	0.62	0.011	10.2	1.89	0.19	

^{*}Nitric acid(1:1),at 20

3・3・3 温度による溶解度の変化

コバルトで表面処理したガンマ酸化鉄を,硝酸 1 対 1 により温度を変化させて 2 時間溶解させたときのコバルトと鉄の割合は, Table 3 に示すとおりである。コバルトと鉄の割合は,室温付近ではあまり変化がみられない。

Table 3 Change of solubility* of surface treated $\,$ -iron () oxide with temperature

A	Insoluble portion			Soluble portion			
Temp.	Fe (%)	Co (%)	Co Fe	Fe (%)	Co (%)	Co Fe	
10	67.2	2.22	0.033	0.78	0.28	0.36	
15	67.1	2.16	0.032	1.06	0.35	0.33	
20	65.9	1.83	0.028	2.11	0.68	0.32	
25	64.9	1.59	0.024	3.20	0.93	0.29	

^{*}Nitric acid(1:1)

3・3・4 濃度による溶解度の変化

コバルトで表面処理したガンマ酸化鉄を,硝酸により20 で2時間,濃度を変化させて溶解させたときのコバルトと鉄の割合は,Table4に示すとおりである。硝酸の濃度が薄くなると共にコバルトと鉄の割合が増加しているが,沈澱物と可溶物のどちらも増加しているためにこれらを比較すると大きな変化はみられない。

Table 4 Change of solubility* of surface treated -iron () oxide with acid concentrations

Portion Acid (Nitric acid)	Insoluble			Soluble			
Conc.	Fe (%)	Co (%)	<u>Co</u> Fe	Fe (%)	Co (%)	Co Fe	
1:1	65.9	1.83	0.028	2.11	0.68	0.32	
1:2	66.3	1.83	0.028	1.77	0.66	0.37	
1:4	67.0	2.05	0.031	1.17	0.46	0.39	
1:9	67.3	2.24	0.033	0.68	0.27	0.40	
1:19	67.5	2.25	0.033	0.47	0.25	0.53	

^{*}At 20 ,2 hrs

3・3・5 輸入品の分析

国産品のコバルトで表面処理したガンマ酸化鉄 2種及び輸入品 3種を,硝酸 1対 1により 20 で 2時間溶解させたときのコバルトと鉄の割合は, Table 5に示すとおりである。これによると,コバルトと鉄の割合は沈澱物と可溶物においてどの試料も一けた以上の差があり,明らかにコバルトで表面処理されていることがわかる。

なお,化合物である鉄酸コバルトは,上の条件ではあまり溶解しないが,1 週間放置してある程度溶解させたところ,コバルトと鉄の割合は沈澱物では0.52,可溶物では0.53となりほぼ一致している。

ノート コバルトを含む酸化鉄の鑑別

Table 5 Analytical results of surface treated
-iron () oxide with cobalt ()
and imported similar articles*

	Insoluble portion			Soluble portion		
Sample	Fe (%)	Co (%)	Co Fe	Fe (%)	Co (%)	Co Fe
r-Iron (III) oxide surface treated with cobalt-1	65.9	1.83	0.028	2.11	0.68	0.32
r-Iron (III) oxide surface treated with cobalt-2	64.8	0.85	0.013	3.28	1.66	0.51
Imported article-A	64.0	3.11	0.049	2.37	1.10	0.46
Imported article-B	66.3	2.05	0.031	1.46	0.77	0.53
Imported article-C	61.2	2.73	0.045	4.80	2.14	0.45

^{*}Treated by nitric acid(1:1) for 2 hrs

4 要約

酸化鉄がコバルトで表面処理されているかどうか の鑑別について検討を行った。

ガンマ酸化鉄はスピネル構造に空格子点があるため,X線回折において四三酸化鉄や鉄酸コバルトと回折角がわずかに異なり,これにより鑑別することができる。しかし,コバルトで表面処理したガンマ酸化鉄は,回折角がガンマ酸化鉄とほぼ同じになり,これらの鑑別はできない。

酸に対する溶解性は、化合物である鉄酸コバルトではコバルトと鉄が同じ割合で溶解していくのに対し、コバルトで表面処理したガンマ酸化鉄では表面のコバルトが先に溶解することから、一定時間溶解させた後の可溶物と不溶物のコバルトと鉄の割合は著しく異なり、表面処理したものかどうかが容易に鑑別できる。